Theory and Finite Temperature

نویسندگان

  • K. Kajantie
  • M. Laine
  • K. Rummukainen
  • M. Shaposhnikov
چکیده

We study to what extent the three-dimensional SU(N) + adjoint Higgs theory can be used as an effective theory for finite temperature SU(N) gauge theory, with N = 2, 3. The parameters of the 3d theory are computed in 2-loop perturbation theory in terms of T /Λ MS , N, N f. The perturbative effective potential of the 3d theory is computed to two loops for N = 2. While the Z(N) symmetry probably driving the 4d confinement-deconfinement phase transition (for N f = 0) is not explicit in the effective Lagrangian, it is partly reinstated by radiative effects in the 3d theory. Lattice simulations in the 3d theory are carried out for N = 2, and the static screening masses relevant for the high-temperature phase of the 4d theory are measured. In particular, we measure non-perturbatively the O(g 2 T) correction to the Debye screening mass. We find that non-perturbative effects are much larger in the SU(2) + adjoint Higgs theory than in the SU(2) + fundamental Higgs theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Buckling Analysis of Graphene Nanoplates Based on the Modified Couple Stress Theory using Finite Strip Method and Two-Variable Refined Plate Theory

Graphene is one of the nanostructured materials that has recently attracted the attention of many researchers. This is due to the increasing expansion of nanotechnology and the application of this nanostructure in technology and industry owing to its mechanical, electrical and thermal properties. Thermal buckling behavior of single-layered graphene sheets is studied in this paper. Given the fai...

متن کامل

Finite Element Analysis of Functionally Graded Skew Plates in Thermal Environment based on the New Third-order Shear Deformation Theory

Functionally graded materials are commonly used in thermal environment to change the properties of constituent materials. The new numerical procedure of functionally graded skew plates in thermal environment is presented in this study based on the C0-form of the novel third-order shear deformation theory. Without the shear correction factor, this theory is also taking the desirable properties a...

متن کامل

Finite Difference Method for Biaxial and Uniaxial Buckling of Rectangular Silver Nanoplates Resting on Elastic Foundations in Thermal Environments Based on Surface Stress and Nonlocal Elasticity Theories

In this article, surface stress and nonlocal effects on the biaxial and uniaxial buckling of rectangular silver nanoplates embedded in elastic media are investigated using finite difference method (FDM). The uniform temperature change is utilized to study thermal effect. The surface energy effects are taken into account using the Gurtin-Murdoch’s theory. Using the principle of virtual work, the...

متن کامل

Thermal Vibration of Composites and Sandwich Laminates Using Refined Higher Order Zigzag Theory

Vibration of laminated composite and sandwich plate under thermal loading is studied in this paper. A refined higher order theory has been used for the purpose. In order to avoid stress oscillations observed in the implementation of a displacement based finite element, the stress field derived from temperature (initial strains) have been made consistent with total strain field. So far no study ...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997